Journal für praktische Chemie Chemiker-Zeitung

(C) Johann Ambrosius Barth 1998

Synthesis and Reaction of Some 2-Alkylene-1,3-oxazolidines

S. Fernandez, and E. Klemm

Jena, Institut für Organische Chemie und Makromolekulare Chemie der Friedrich-Schiller-Universität
Received July 29th, 1997, respectively November 10th, 1997

Abstract

Starting from 1,3-oxazoline 6 synthesis of keteneO, N-acetals $\mathbf{2 b}, \mathbf{2 c}$ is described via NBS bromination and HBr elimination. The N-sulfonyl-oxazolidines $\mathbf{1 0}, 11$ are synthesized by cycli-

zation starting from aminoalcohol 7, 10d react with potassium t-butoxide to the oxazolidine 2d; 11d gives under the some conditions the ring opening product 12d, compound 10a is inert.

In contrast to the ketene-O, O -acetals of the type $\mathbf{1}$ which react with dibenzoyl peroxide 3 under ring opening to the polyesters of the type 4 with $n>1[1,2]$ the reaction of the ketene O, N acetal $\mathbf{2 a}(\mathrm{R}=\mathrm{Me})$ with $\mathbf{3}$ leads to a simple ring opening product 5 [3, 4]. To confirm more these differences between ketene-O,O-acetals, 2b, 2d and $\mathbf{2 c}$ were prepared and the both first mentioned compounds treated with $\mathbf{3}$ under analogous conditions. Surprisingly the reaction took not place.

The synthesis of the ketene- O, N-acetals $\mathbf{2 b}-\mathbf{2 d}$ was made in different ways. Whereas the compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ were synthesized in changing yields by reaction of the 1,3-oxazoline 6 with variable amounts of NBS in the presence of AIBN, the synthesis of 2 d ($\mathrm{R}=\mathrm{ph} n \mathrm{n}$) was carried out with the aminoalcohol $7 \mathbf{d}$. 7d gives the sulfonamide $\mathbf{8 d}$ with p-toluenesulfonylchloride which reacts with bromoacetaldehyde diethyl acetal to the 1,3-oxazolidine 10d. Potassium t-butoxide was used for the elimination of HBr leading to the end product 2 d .

The 1,3 -oxazolidine derivatives $10 a$ and $11 d$ prepared in the same way from the aminoalcohols $7 \mathbf{a}$ and 7 d show different reactions with potassium t-butoxide. Whereas 11d gives the ring opening product $\mathbf{1 2 d}$ (with trace of water), 10a is inert under the some conditions.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker WP 200 operating at $200 \mathrm{~Hz}\left({ }^{1} \mathrm{H}\right)$ and $50 \mathrm{~Hz}\left({ }^{13} \mathrm{C}\right)$. Chemical shifts are referred to internal standard TMS and are reported in ppm.

N-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-methanesulfonamide (9d)

A solution of $1.51 \mathrm{~g}(13.2 \mathrm{mmol})$ of methanesulfonyl chloride (Fluka) in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of 4.05 g (26.4 mmol) of 2-amino-1-phenyl-1-propanol 7 d (Fluka)

in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}$. After the addition, the mixture was warmed to room temperature and stirred overnight. The precipitate was filtered and the solvent evaporated, the residue was dried and recrystallized from diethyl ether. Yield 89%, m.p. $101-102{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=$ $1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.76(1 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CHCH}_{3}\right), 4.84(1 \mathrm{H}, \mathrm{d},-\mathrm{CHOH}), 7.30(5 \mathrm{H}$, aromatic H's). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right): \delta / \mathrm{ppm}=16.11\left(\mathrm{CH}_{3}\right), 41.64$ $\left.\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 55.13(-\underline{\mathrm{C} H C H})_{3}\right), 76.30(-\mathrm{CHOH}), 126.30-140.28$ (aromatic C's). $-\mathrm{IR}(\mathrm{KBr}) v / \mathrm{cm}^{-1}=3497,3335,2993,1407$, 1296, 1146, 1122, 1050, 763, 705, 518
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{SNO}_{3}$ calcd.: C 52.41 H 6.55 S 13.99 N 6.11
(229.16) found: C 52.13 H 6.54 S 14.51 N 6.05.

2-Bromomethyl-3-methanesulfonyl-4-methyl-5-phenyl-oxazolidine (11d)

$0.50 \mathrm{~g}(2.2 \mathrm{mmol})$ compound 9 d and $0.43 \mathrm{~g}(2.2 \mathrm{mmol})$ of bromoacetaldehyde diethyl acetal (Aldrich) and catalytic amount of Amberlyst-15 (strong acid, Merck) were dissolved in 50 mL of benzene and refluxed for 30 h collecting the azeotrope benzene/ethanol in a trap. Then the mixture was cooled to room temperature, filtered, the solvent evaporated, and the residue was purified by chromatography on silica gel (eluents: ethyl acetate/heptane). Yield 55%, m.p. $84-85^{\circ} \mathrm{C}$. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=0.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right)$, $3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.64\left(1 \mathrm{H}, \mathrm{dd},-\mathrm{CH}_{2} \mathrm{Br}\right), 3.83(1 \mathrm{H}, \mathrm{dd}$, $\left.-\mathrm{CH}_{2} \mathrm{Br}\right), 4.20\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CHCH}_{3}\right), 5.12(1 \mathrm{H}, \mathrm{d},-\mathrm{CH}-\mathrm{O}), 5.32$ $(1 \mathrm{H}$, dd, $\mathrm{O}-\mathrm{CH}-\mathrm{N}), 7.34$ (5 H , aromatic H 's). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right): \delta / \mathrm{ppm}=17.57\left(\mathrm{CH}_{3}\right), 34.03\left(-\mathrm{CH}_{2} \mathrm{Br}\right)$, $39.12\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 58.45\left(-\mathrm{CHCH}_{3}\right), 82.13(-\mathrm{CH}-\mathrm{O}), 88.23(\mathrm{O}-$ $\mathrm{CH}-\mathrm{N}$), 126.10-134.73 (aromatic C's). - IR (KBr) $\mathrm{v} / \mathrm{cm}^{-1}=$ 2976, 1455, 1337, 1165, 1025, 998, 753, 710, 571.
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{SBrNO}_{3}$
(334.09) calcd.: C 43.14 H 4.79 S 9.60 Br 23.92 N 4.19 found: C 43.60 H 4.66 S 9.51 Br 23.01 N 4.35.
N-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-N-acetylmethanesulfonamide (12d)
0.22 g (2 mmol) of potassium t-butoxide in 5 mL of THF (dry) were added dropwise to a solution of $0.60 \mathrm{~g}(1.8 \mathrm{mmol})$ compound 11 d in 5 mL of THF (dry) at $-10^{\circ} \mathrm{C}$. Then the mixture was warmed to room temperature and refluxed for 1h. After cooling, the precipitate was filtered, the solvent evaporated, and the residue was washed with a solution of benzene/hexane $1: 1$ at $80^{\circ} \mathrm{C}$ and hot filtrated. The solvents were evaporated, and the rest was recrystallized from hexane (dry) under argon. Yield 70%, m.p. $39-40^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=1.17\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right), 2.13(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.93\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CHCH}_{3}\right), 5.69$ $(1 \mathrm{H}, \mathrm{d},-\mathrm{CHOH}), 7.33\left(5 \mathrm{H}\right.$, aromatic H's). $-{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $62 \mathrm{MHz}): \delta / \mathrm{ppm}=18.19\left(\mathrm{CH}_{3}\right), 21.08\left(\mathrm{CH}_{3} \mathrm{CO}\right), 41.90$ $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 53.34\left(-\underline{\mathrm{C}} \mathrm{HCH}_{3}\right), 77.56(-\mathrm{CHOH}), 126.99-136.37$ (aromatic C's), 169.91 (CO).
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{SNO}_{4}$ calcd.: C 53.14 H 6.27 S 11.82 N 5.16
(271.18) found: C 52.94 H 6.02 S 11.95 N 5.02.

N-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-4-methyl-benzenesulfonamide ($\mathbf{8 d}$)
10.16 g (53.3 mmol) p-toluenesulfonyl chloride in 50 mL
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added dropwise to a solution of $10 \mathrm{~g}(53.3 \mathrm{mmol})$ of 7 d and $33.44 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}(239.9 \mathrm{mmol})$ in $100 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$. After the addition the mixture was stirred at this temperature for 4 h and then warmed to room temperature and stirred overnight. The precipitate was filtered, the solvent evaporated and the residue was dried and recrystallized from diethyl ether. Yield 89%, m.p. $114-115{ }^{\circ} \mathrm{C}$. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.53\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CHCH}_{3}\right), 4.77(1 \mathrm{H}, \mathrm{d},-\mathrm{CHOH}), 7.18-$ $7.30(7 \mathrm{H}$, aromatic H 's $), 7.75(2 \mathrm{H}$, aromatic H 's $) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right): \delta / \mathrm{ppm}=14.44\left(\mathrm{CH}_{3}\right), 21.45\left(\mathrm{CH}_{3}\right), 54.95$ $\left(-\mathrm{CHCH}_{3}\right), 75.64(-\mathrm{CHOH}), 126.01-143.46$ (aromatic C's). $-\mathrm{IR}(\mathrm{Kr}): v / \mathrm{cm}^{-1}=3421,3182,2982,1444,1323,1155,1140$, 1091, 1081, 973, 700, 666, 559.
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{SNO}_{3}$ calcd.: C 62.97 H $6.23 \quad \mathrm{~S} 10.51 \quad \mathrm{~N} 4.59$
(305.16) found: C 62.7 H 6.40 S 10.43 N 4.60.

2-Bromomethyl-4-methyl-5-phenyl-3-(p-toluenesulfonyl)oxazolidine (10d)

17.94 g (58.8 mmol) compound $\mathbf{8 d}, 11.59 \mathrm{~g}(58.8 \mathrm{mmol})$ of bromoacetaldehyde diethyl acetal (Aldrich) and catalytic amount of Amberlyst 15 (strong acid, Merck) were dissolved in 100 mL of benzene and refluxed for 31 h collecting the azeotrope benzene/ethanol in a trap. Then the mixture was cooled to room temperature, filtered, the solvent evaporater and the residue purified by chromatography on silica gel (eluents: diethyl acetate/heptane). Yield 90%, m.p. 104-105 ${ }^{\circ} \mathrm{C}$. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=0.85(3 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CH}_{3}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd},-\mathrm{CH}_{2} \mathrm{Br}\right), 3.90(1 \mathrm{H}$, dd, $\left.-\mathrm{CH}_{2} \mathrm{Br}\right), 4.03\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CHCH}_{3}\right), 4.37(1 \mathrm{H}, \mathrm{d},-\mathrm{CH}-\mathrm{O})$, $5.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{O}-\mathrm{CH}-\mathrm{N}), 7.15-7.40(7 \mathrm{H}$, aromatic H's), 7.80 (2 H , aromatic H's). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right): \delta / \mathrm{ppm}=$ $17.60\left(\mathrm{CH}_{3}\right), 21.59\left(\mathrm{CH}_{3}\right), 34.60\left(-\mathrm{CH}_{2} \mathrm{Br}\right), 58.47$ $\left(-\underline{\mathrm{C}} \mathrm{HCH}_{3}\right), 81.49(-\mathrm{CH}-\mathrm{O}), 88.60(\mathrm{O}-\underline{\mathrm{C}} \mathrm{H}-\mathrm{N}), 125.91-144.67$ (aromatic C's). - IR (KBr): $v / \mathrm{cm}^{-1}=3246,2978,1433,1327$, 1167, 1151,1039, 704.
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SBrNO}_{3}$
(410.15) calcd.: C 52.71 H 4.88 S 7.82 Br 19.48 N 3.41
found: C 52.54 H 5.10 S 7.70 Br 19.13 N 3.55.

4-Methyl-2-methylene-5-phenyl-3-(p-toluenesulfonyl)-oxazolidine (2d)

5.00 g (12 mmol) of compound 10 d in 10 mL THF (dry) were added dropwise into a solution of $1.64 \mathrm{~g}(15 \mathrm{mmol})$ potassium t-butoxide in 5 mL of THF (dry) at $-10^{\circ} \mathrm{C}$. After the addition the mixture was warmed to room temperature and then stirred 1 h at $50^{\circ} \mathrm{C}$. The precipitate was filtered, the solvent evaporated, and the residue was washed with a solution of benzene/hexane $1: 1$ and hot filtrated. The solvents were evaporated and the rest was recrystallized from hexane. Yield 86%, m.p. 64-65 ${ }^{\circ} \mathrm{C}$. - H NMR (DMSO-d $6,250 \mathrm{MHz}$): $\delta / \mathrm{ppm}=0.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.90(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\right), 4.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}=\mathrm{C}-\right), 4.81(1 \mathrm{H},-\mathrm{CH}-), 4.86(1 \mathrm{H}$, $-\mathrm{CH}-), 7.31(5 \mathrm{H}$, aromatic H's), $7.47(2 \mathrm{H}$, aromatic H 's), 7.90 (2 H , aromatic H 's). $-{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 62 \mathrm{MHz}$): $\delta \mathrm{ppm}$ $=16.68\left(\mathrm{CH}_{3} \mathrm{CH}-\right), 21.03\left(\mathrm{CH}_{3}\right), 58.31\left(-\mathrm{CHCH}_{3}\right), 68.39$ $\left(\mathrm{CH}_{2}=\mathrm{C}-\right), 80.06$ (- $\left.\mathrm{CH}-\mathrm{O}\right), 125.86-144.73$ (aromatic C's), $151.02\left(-\underline{\mathrm{C}}=\mathrm{CH}_{2}\right)$. $\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=2928,1673,1350$, $1168,1094,1002,661,593$.
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{SNO}_{3}$ calcd.: C 65.65 H 5.77 S 9.74 N 4.25 (329.24) found: C 65.58 H 5.32 S 8.35 N 3.57.

N -(Hydroxy-1,1-dimethyl-ethyl)-4-methyl-benzenesulfonamide (8a)

$19.90 \mathrm{~mL}(142.8 \mathrm{mmol}) \mathrm{Et}_{3} \mathrm{~N}$ was added dropwise to a solution of $6.36 \mathrm{~g}(71.4 \mathrm{mmol}) 7 \mathrm{a}$ and $13.61 \mathrm{~g}(71.4 \mathrm{mmol})$ of p toluenesulfonyl chloride in $50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the addition the mixture was stirred 24 h and then washed with solution of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, the organic phase was dried with sodium sulfate, and the solvent evaporated. The residue was dried and recrystallized from hexane. Yield 50%, m.p. $92-93^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=1.07\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 2.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.40\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{OH}\right), 7.24(2 \mathrm{H}$, aromatic H 's $)$, $7.77\left(2 \mathrm{H}\right.$, aromatic H's). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=21.40\left(\mathrm{CH}_{3}\right), 24.31\left(2 \mathrm{CH}_{3}\right), 57.77\left(-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.10$ $\left(-\mathrm{CH}_{2} \mathrm{OH}\right), 126.89-143.10$ (aromatic C's). $-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}$ $=3296,3265,2930,1311,1137,1094,660$.
$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{SNO}_{3}$ calcd.: C 54.33 H 6.99 S 13.18 N 5.76
(243.17) found: C 54.28 H 6.68 S 13.38 N 5.88.

2-Bromomethyl-4,4-dimethyl-3-(p-toluenesulfonyl)-oxazolidine (10a)

$8.29 \mathrm{~g}(34.1 \mathrm{mmol})$ compound $\mathbf{8 a}, 6.72 \mathrm{~g}(34.1 \mathrm{mmol})$ bromoacetaldehyde diethyl acetal (Aldrich) and 0.10 g of Amberlyst-15 (strong acid, Merck) were dissolved in 25 mL of benzene and refluxed for 24 h collecting the azeotrope benzene/ethanol in a trap. After cooling to room temperature the mixture was filtered, the solvent was evaporated, and the residue was purified by chromatography on silica gel (eluents: diethyl acetate/heptane), yield 65%, m.p. $61-62^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.43(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.45\left(1 \mathrm{H}\right.$, dd, $\left.-\mathrm{CH}_{2} \mathrm{Br}\right), 3.63(1 \mathrm{H}, \mathrm{d}$, $\left.-\mathrm{CH}_{2}-\mathrm{O}-\right), 3.72\left(1 \mathrm{H}, \mathrm{dd},-\mathrm{CH}_{2} \mathrm{Br}\right), 3.82\left(1 \mathrm{H}, \mathrm{d},-\mathrm{CH}_{2}-\mathrm{O}-\right)$, $5.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{O}-\mathrm{CH}-\mathrm{N}), 7.26(2 \mathrm{H}$, aromatic H 's $), 7.72(2 \mathrm{H}$, aromatic H's). $-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right): \delta / \mathrm{ppm}=21.36$ $\left(\mathrm{CH}_{3}-\right), 24.24\left(\mathrm{CH}_{3}\right), 26.68\left(\mathrm{CH}_{3}\right), 33.53\left(-\mathrm{CH}_{2}-\mathrm{Br}\right), 64.07$ $\left(-\underline{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 78.44\left(-\mathrm{CH}_{2}-\mathrm{O}\right), 90.60(\mathrm{O}-\underline{\mathrm{CH}}-\mathrm{N}), 127.48-$ 143.84 (aromatic C's). - IR (KBr): $v / \mathrm{cm}^{-1}=2934,2872,1716$, 1500, 1451, 1317, 1189, 1031.
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{SBrNO}_{3}$
(348.10) calcd.: C 44.85 H 5.17 S 9.21 Br 22.96 N 4.02
found: C 45.59 H 5.43 S 9.78 $\operatorname{Br} 21.95 \mathrm{~N} 4.15$.
3-Bromo-2-bromomethylene-4,4-dimethyl-oxazolidine (2b) and 3-Bromo-2-dibromo-methylene-4,4-dimethyl-oxazolidine (2c)
0.50 g (4.4 mmol) 2,4,4-trimethyl-4,5-dihydrooxazol (Merck)
compound $6,0.786 \mathrm{~g}(4.4 \mathrm{mmol}) \mathrm{NBS}$ (N -bromosuccinimide, Merck) and a catalytic amount of AIBN ($2,2^{\prime}$-azoisobutyronitrile) were dissolved in 50 mL of CCl_{4} and refluxed until the end of reaction (1 h). After cooling to room temperature, the precipitate was filtered, the solvent evaporated, and the residue was purified by chromatography on silica gel (eluents: diethyl acetate/heptane). Yield 20% of 2b, m.p. $111-112^{\circ} \mathrm{C}$, yield 40% of $\mathbf{2 c}$, m.p. $117-118^{\circ} \mathrm{C}$. With 3 eq. of NBS, only 2c was obtained with the yield of 77%. - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}): \delta / \mathrm{ppm}=1.30\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 4.13\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right.$ O), $6.05(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=\mathrm{C}-)$. - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=27.50\left(2 \mathrm{CH}_{3}\right), 27.71(-\mathrm{C}=\underline{\mathrm{CHBr}}), 68.20\left(-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $80.73\left(-\mathrm{CH}_{2}-\mathrm{O}\right), 160.80(\mathrm{O}-\mathrm{C}-\mathrm{N}) .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=2972$, 1658, 1306, $981,617$.
2b: $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}$ calcd.: C 26.60 H 3.32 Br 59.00 N 5.17
(270.88) found: C 26.01 H 3.10 Br 57.13 N 5.02. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta / \mathrm{ppm}=1.37\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right)$, $4.31\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\mathrm{O}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=20.68\left(-\underline{C}(\mathrm{Br})_{2}\right), 27.13\left(2 \mathrm{CH}_{3}\right), 68.79\left(-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $82.39\left(-\mathrm{CH}_{2}-\mathrm{O}\right), 161.18(\mathrm{O}-\underline{\mathrm{C}}-\mathrm{N}) .-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=2959$, 1649, 1279, 990, 722, 618.
2c: $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{NO}$ calcd.: C 20.60 H 2.29 Br 68.53 N 4.00 (349.79) found: C 20.64 H 2.52 Br 65.27 N 4.10 .

References

[1] T. Endo, F. Sanda, Polymeric Materials Encyclopedia 10, 7549
[2] W. J. Bailey, Polymer Journal 17 (1985) 85
[3] J. Letsch, E. Klemm, J. Polym. Sci., Part A, Polym. Chem. 32 (1994) 2867
[4] T. Schulze, J. Letsch. E. Klemm, J. Polym. Sci., Part A, Polym. Chem. 34 (1996) 81

Address for correspondence:
Frau Prof. Dr. E. Klemm
Friedrich-Schiller-Universität
Institut für Organische Chemie und
Makromolekulare Chemie
Humboldtstraße 10
D-07743 Jena

